

SAULT COLLEGE OF APPLIED ARTS \& TECHNOLOGY

SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title	MATHEMATICS	
Code No.:	MTH 220-4	
Program:	MECHANICAL TECHNICIAN	
Semester:	II	
Date:	JUNE, 1984	
Author:	W. MACQUARRIE	
	New	Revision:
APPROVED:		Date

CALENDAR DESCRIPTION

MATHEMATICS
Course Name

MTH 220-4
Course Number

PHILOSOPHY/GOALS:

Exponents, radicals, logarithmic relationships, solution of quadratic and radical equations, ratio and proportion, analytical trigonometry, trigonometry of the oblique triangle, radian measure, trigonometric identities and equations.

METHOD OF ASSESSMENT (GRADING METHOD):

The students will be assessed by tests. These tests will include periodic tests based upon blocks of subject matter and may, at the instructor's discretion include unannounced surprise tests on current work and/or a final test on the whole course. A letter grade will be based upon a student's weighted average of his test results. See also the mathematics department's annual publication "To the Mathematics Student" which is presented to the students early in each academic year.

TEXTBOOKIS):

```
Person, "Essentials of Mathematics" - Wiley, 4th Edition
```


NOTES:

The course outline covers the second semester mathematics for technicians in the Mechanical Technician program.

For demonstrating solutions to Quadratic Equations, the film strips No.'s 1114 and 1150 can be used as instructional aids.
*The laws of Sines and Cosines can also be demonstrated by film strips No.'s 1158 and 1169 respectively. When possible, subject-related problems should be given for application.

TOPICAL OBJECTIVES:

1. Logarithms:

The student will be required to:
a) Understand the definition of a logarithm and be able to convert a simple exponential equation to an equivalent logarithmic equation and vice-versa.
b) Be able to plot and recognize graphs of simple logarithmic and exponential functions and be able to distinguish these from graphs of power functions.
c) Know and be able to apply the properties of logarithms to the simplification of logarithmic expressions.
d) Be able to find the common logarithm of a number and common antilogarithms.
e) Be able to use common logarithms in computations of products, quotients, powers and roots and combinations of these.
f) Be able to use natural logarithms as in d) and e) above.
g) Be able to solve basic exponential and logarithmic equations including the evaluation of a logarithm of any positive number to any stated base.
2. Quadratic Equations:

The student will be required to:
a) Recognize and solve quadratic equations by factoring, completing the square, quadratic formula and where possible, by graphing.

TOPICAL OBJECTIVES - Continued

2- Quadratic Equations - Continued
b) Be able to use the discriminant to identify the kind of roots a quadratic equation has without solving the equation.
c) Be able to solve radical equations including the rejection of extraneous roots-
d) Be able to recognize the possibility and reduce other types of equations of quadratic form and solve them using quadratic equation methods, including the rejection of all extraneous roots.
e) Know the properties of a quadratic curve.
f) Solve applied problems which involve quadratic or radical equations and verify the results without reference to any derived equation (such problems may involve SI and English units).

3* Vectors and Oblique Triangles:
The student will be required to:
a) Be able to find any trigonometric functions of any angle.
b) Be able to use radian angle measure in solving problems.
c) Be able to add and subtract vectors and apply them in the solution of problems.
d) Be able to solve problems involving oblique triangles by use of the sine and cosine laws.
^' Graphs of Trigonometric Functions:
The student will be required to:
a) Understand and use the concepts of amplitude, period, frequency and phase angle.
b) Plot curves of trigonometric and inverse trigonometric functions.
c) Plot curves of composite trig functions.

TOPICAL OBJECTVES - Continued
5- Trigonometric Identities, Equations and Inverse Functions:
The student will be required to:
a) Know the basic identities of the following types and be able to use them in proving identities: reciprocal functions, sin-cos-tan relationships and Pythagorean relationships-
b) Know the sum and difference formulas, the double angle formulas and the half angle formulas and be able to apply them to practical problems and to the proof of identities-
c) Be able to solve trigonometric equations involving single and multiple angles.
d) Be familiar with and able to evaluate the inverse trigonometric functions.

OBJECTIVES:

The basic objective is for the student to develop an understanding of the method studied, knowledge of the facts presented and an ability to use these in the solution of problems. For this purpose exercises are assigned. Tests will reflect the sort of work contained in the assignments. The level of competency demanded is the level required to obtain an overall passing average in the tests. The material to be covered is listed on the following pages.

REVIEW OF BASIC ALGEBRA

Exponents and radicals Powers and roots

LOGARITHMS
Definition of Logarithms Ch. 33, Sec. 1-5
Graphs
Properties of Logarithms
Ch. 34
Common Logarithms
Computations with Logarithms
Natural Logarithms
Exponential and Logarithmic Equations

Ch. 18, 20
(Ch. 21 optional) Completing the Square

Ch. 23

QUADRATIC EQUATIONS
Definition and Verification
Ch. 35, Sec. 2-5

RATIO, PROPORTION \& VARIATION

Solution by Formula
The Discriminant
Graphical Solution
Equations Solved by Quadratic Methods
Radical Equations
VECTORS AND OBLIQUE TRIANGLES
Functions of all Angles
Applications of Radian Measure Vectors
Vector Problems
Sine Law
Cosine Law
Problems
GRAPHS OF TRIGONOMETRIC FUNCTIONS
Introduction
Ch. 46
Amplitude, Period, Frequency, Phase Angle
Composite Trig. Functions
Applications

TRIGONOMETRIC IDENTITIES, EQUATIONS
 AND INVERSE FUNCTIONS

Reciprocal Functions
Ch. 40, 42, 43
Sin-Cos-Tan Relationships
Pythagorean Relationships
Functions of A + B
Double Angle Formulas
Half Angle Formulas
Identities

AREAS OF TRIANGLES
Problems requiring use of right triangle and oblique triange trigonometry

Rice \& Knight
pp. 468-472
pp. 490-499

